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Abstract— A novel filtering structure with linear complexity is
proposed for Lagrange interpolation. The structure is similar to
the Farrow structure in principle, but it is more efficient and has
the additional feature of being order updatable on-the-fly. The
main application for the proposed structure is the implementation
of fractional delay filters to mitigate the symbol synchronization
errors in digital communications. Some other applications are
time-delay estimation, echo cancellation, acoustic modeling and
arbitrary sampling rate conversion.

Index Terms— Interpolation, Lagrange interpolation, Farrow
structure

I. I NTRODUCTION

Synchronization of system parameters at transmitting and
receiving ends of a channel is critical to establish reliable
communication. The mismatches in carrier frequency, carrier
phase or timing errors in signal sampling can significantly
degrade communication. In this letter, we propose an efficient
FIR interpolation structure which can be used in digital
receivers to mitigate the symbol synchronization errors.

The proposed structure is an implementation for Lagrange
interpolation. Lagrange interpolation is based on determining
the N th order polynomial passing throughN + 1 sample
points. Zero-order hold, linear and cubic interpolation are
some special cases of Lagrange interpolation. Lagrange inter-
polation has found applications in digital-to-analog converters,
image processing, time delay estimation and communication
problems.

In digital communications, the receiver clock may have
time-varying offset causing inter-symbol interference at the
channel output. One way of compensating the error is to
fractionally delay the signal, [1], [2]. An efficient filtering
structure for fractional delay generation is proposed by Far-
row, [3], [4]. The structure has an explicit parameter which
can be adjusted during run time and it is suitable for the
applications whose delay parameter is frequently varied as
in synchronization or time-delay estimation problems. Farrow
structure has been improved in [5] leading to some addi-
tional computational savings for low ordered interpolators.
The structure has been extended to the filterbanks for wide-
band signals. The Farrow filterbanks are optimal in the min-
max error sense and designed to minimize the implementation
cost, [6], [7]. The hardware optimization of Farrow structure
[8], and several other applications on multi-channel signal

sampling and reconstruction have been discussed in [9], [10],
[11].

In this letter we present an alternative to the Farrow structure
for Lagrange interpolation. The proposed structure has linearly
growing computational complexity while earlier proposals
have complexities growing with the square of the interpolation
order. Before the description of the proposed structure, we
present a brief review of the Farrow structure with some of
its extensions.

II. FARROW STRUCTURE

Farrow has proposed a filterbank structure with intermittent
delay multipliers in [3]. The structure is shown in Figure 1.

Fig. 1. Farrow Structure

The interpolation outputY (z) can be expressed asY (z) =∑N
k=0 Ck(z)DkX(z), whereD is the adjustable delay para-

meter. For the structure to be interpolating, the output should
be the delayed versions of the input forD={0, 1, . . . , N}.
This constraint imposesN + 1 equations in the formY (z) =
z−DX(z) for D={0, 1, . . . , N}. The unknownCk(z)’s can be
uniquely solved from these equations, [3].

The computational needs of Farrow structure isN2 + N
multiplications andN2 additions per output sample. Note
that, C0(z) is equal to1 for all delay values; therefore the
implementation cost ofC0(z) is discarded in this calculation.
For low interpolation orders such as second or third; it is
possible to customize the filter design by combining common
multiplier factors together resulting in some savings. But in
general, the computation requirements of the Farrow structure
grows with the square of the interpolation order.

In [5], Farrow structure has been modified and its computa-
tion load has been lightened by deleting the integer part of the
delay parameterD. This has lead to some additional savings
for low ordered interpolations. In [6], filterbanks approximat-
ing exact Lagrange interpolation in the min-max error sense is
proposed. The computational cost of the filterbanks is further
minimized in [7].
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III. T HE PROPOSEDSTRUCTURE

The proposed structure is based on discrete time Taylor
series expansion. We briefly review the difference operators
and factorial functions to illustrate the approach.

The backward difference operator,∆f [n] = f [n]−f [n−1],
is the dual of derivative operator. Similarly, the discrete time
dual of polynomial powers are called factorial polynomials
and defined as follows:

x[N ] = x(x + 1)(x + 2) . . . (x + N − 1) (1)

As expected, when∆ is operated on the factorial polynomials,
we get a factorial polynomial with one less degree,∆x[N ] =
Nx[N−1]. The discrete time dual of Taylor series can then
be written in terms of factorial polynomials and difference
operators:

f̃(t) =
∞∑

n=0

∆nf [k]
(t− k)[n]

n!
(2)

The implicit interpolation operation in (2) can be easily
verified by substitutingt = k into the equation, leading to
f̃(t) = f [k]. After the application of∆ to both sides of (2);
if t is substituted fork, we get∆f̃(t) = ∆f [k]. By repeating
the same operation for arbitrary powers of∆, we can show
that f̃(k − q) = f [k − q] for all q.

When the summation in (2) is truncated to a finite number
of terms, sayN , the resultant relation is equivalent to fitting a
N th degree polynomial toN +1 consecutive samples off [k].
In other words, the truncated sum is theN th order Lagrange
interpolation of the input.

The third order interpolation relation can be explicitly
written as:

f̃(t) = f [k] +
∆f [k]

1!
(t− k) +

∆2f [k]

2!
(t− k)[2] + . . .

. . . +
∆3f [k]

3!
(t− k)[3]

= f [k] +
∆f [k]

1!
(−D) +

∆2f [k]

2!
(−D)[2] + . . .

. . . +
∆3f [k]

3!
(−D)[3] (3)

The output f̃(t) denotes the interpolation result andD
indicates the delay parameter as shown in Figure 2.
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Fig. 2. Third order interpolation

TABLE I

COMPUTATIONAL COMPLEXITY COMPARISON FOR FARROW, MODIFIED

FARROW AND PROPOSEDSTRUCTURE. THE NUMBER OF ADDITIONS AND

MULTIPLICATIONS ARE THE FIRST AND SECOND ELEMENTS OF EACH

TABLE ENTRY.

Order Farrow M. Farrow Proposed
1 (2,1) (2,1) (2,1)
2 (6,6) (4,4) (5,4)
3 (14,12) (11,9) (7,8)
N (O(N2), O(N2)) (O(N2), O(N2)) (3N − 2, 3N − 1)

The remarkable aspect of relation (3) is the simplicity of its
implementation. The consecutive terms in summation (2) can
be recursively calculated as follows:

(−D)[N ]∆N

N !
f [k] =

(−D)[N−1]∆N−1

(N − 1)!

(−D + N − 1)∆

N
f [k] (4)

When the recursion is inserted in the Taylor summation, the
overall structure simplifies to the structure shown in Figure 3.

The computational complexity of the proposed structure is
3N−2 additions and3N−1 multiplications for theN th order
interpolation. Furthermore once the multiplication factors for
delay D are calculated and stored, the overall complexity of
delaying the next incoming sample forD units reduces to
N multiplications and2N − 2 additions per output sample.
In other words computation load reduces to the level of
N tap FIR filtering with constant coefficients. In Table I,
computational complexity requirements of different Lagrange
interpolation implementations are compared.
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Fig. 3. Proposed Structure

A novel feature of the proposed structure is the run time
increment-decrement possibility of the interpolation order. As
shown in Figure 3, the order of the structure can be easily
changed by flipping the switch between the stages of filtering.
This feature can be useful in applications requiring variable
levels of interpolation as in software radio applications, [12].

In Figure 4, the magnitude and phase delay response of
the 18th order Lagrange interpolator is shown for different
delay values. The worst case magnitude and phase error in the
frequency range[0, π

2 ] is 0.00049 and 0.00054, respectively.
Using the proposed structure, the implementation cost of the
filter is reduced from182 multiplications to 18 multiplications
with stored coefficients and to 53 coefficients with calculated
coefficients. In [7, Example 3], a filterbank is optimized to gen-
erate fractional delays with the maximum magnitude and phase
error of 0.001. The resulting optimized filterbank requires
19 multiplications per output sample. When two systems are
compared, we note that the standard Lagrangian filter, which
does not require any optimization, becomes competitive with
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the optimized one when implemented with the proposed struc-
ture. In other words, the maximally flat Lagrange interpolators
[2], whose frequency response closely approximate the ideal
delay response for low bandwidth signals, can be implemented
at reduced costs. Therefore, higher order Lagrange filters
needed for higher bandwidth inputs can be cost efficiently
implemented with the proposed structure leading to a leverage
between the optimized designs of [7] and standard Lagrangian
filters.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0.9995

0.9996

0.9997

0.9998

0.9999

1

1.0001
Magnitude Response in [0,0.5π]

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
8.5

8.6

8.7

8.8

8.9

9

9.1
Phase Delay Response in [0,0.5π]

D=8.625

D=8.75

D=8.875

D=9

Fig. 4. Magnitude and phase delay response of 18th order Lagrange
interpolator.

IV. CONCLUSIONS

We have presented an efficient structure for Lagrange in-
terpolation. The structure is well suited for the applications
requiring frequent variation of the interpolation parameter. The
proposed structure has linearly growing computational com-
plexity, while alternative structures have complexities growing
with the square of the interpolation order. We believe that such
a reduction in complexity can be critical in synchronization or
time-delay estimation applications. Additionally, the interpo-
lation order of the proposed structure can be changed during
run time leading to a useful feature for applications such as
software defined radio applications which heavily depend on
interpolation for sampling rate conversion.
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